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Results are presented from an assessment of the applicability of fractal scale-similarity 
in the spatio-temporal structure of Sc + 1 conserved scalar fields {(x, t> and scalar 
energy dissipation rate fields V{. V<(x, t )  in turbulent flows. Over 2 million spatial and 
temporal intersections were analysed from fully resolved three-dimensional (2563) 
spatial measurements as well as fully resolved four-dimensional spatio-temporal 
measurements containing up to 3 million points. Statistical criteria were used to assess 
both deterministic and stochastic fractal scale-similarity and to differentiate between 
fractal and random sets. Results span the range of spatio-temporal scales from the 
scalar diffusion scales (A,,, T,) to the viscous diffusion scales (A,,, T,) and to the outer 
scales (8, T,J. Over this entire range of scales, slightly over 99.0% of all intersections 
with the scalar dissipation support geometry showed scale-similarity as fractal as 
stochastically self-similar fBni sets having the same record length. Dissipation values 
above the mean were found to have support dimension D = 0.66. The dissipation 
support dimension decreased sharply with increasing dissipation values. Virtually no 
intersections showed scaling as random as a random set with the same relative cover. 
In contrast, intersections with scalar isosurfaces showed scaling only approximately as 
fractal as a corresponding fBm set and only over the range of spatio-temporal scales 
between (Af) .  q,) and (A,,, r,). On these inner scales the isosurface dimension was D = 

0.48 and was largely independent of the isoscalar value. At larger scales, scalar 
isosurfaces showed no fractal scale-similarity. In contrast, isoscalar level crossing sets 
showed no fractal scale-similarity over any range of scales, even though the scalar 
dissipation support geometry for the same data is clearly fractal. These results were 
found to be unaffected by noise. 

1. Introduction 
Among the principal difficulties in modelling the structure and dynamics of fluid 

turbulence is the wide range of length and time scales over which variations occur. This 
is the case in the velocity field as well as in the concentration fields of dynamically 
passive conserved scalar quantities mixed by the flow. Attempts to simplify the 
description of these turbulence fields on the basis of dynamical self-similarity 
assumptions date back as far as Kolmogorov (1941). Taylor (1935) and Richardson 
(1920). In more recent times, a broad class of such self-similar dynamical processes, 
namely the multiplicative stretching and folding common to many nonlinear systems, 
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has arisen as a possible means to characterize turbulence fields. Such a multiplicative 
process would lead to fractal geometries and multifractal scalings in the associated 
turbulence fields, which in turn would allow scaling properties of these fields over a 
wide range of length and time scales to be reduced to just a few parameters, among 
them fractal dimensions. The mathematical basis for fractal and multifractal 
descriptions of turbulence fields has by now been quite widely developed (e.g. 
Mandelbrot 1974; Frisch, Sulem & Nelkin 1978 ; Grassberger 1983 ; Hentschel & 
Procaccia 1983; Benzi et al. 1984; Frisch & Parisi 1985; Halsey et al. 1986; Meneveau 
& Sreenivasan 1991), and new classes of turbulence models based on these methods 
have begun appearing. However, direct experimental evidence for the applicability of 
these concepts, even for the comparatively simple fractal scale similarity potentially 
relevant to various geometric constructs in turbulent flows, has been inconclusive (e.g. 
Sreenivasan & Meneveau 1986 ; Sreenivasan & Prasad 1989 ; Sreenivasan, Ramshankar 
& Meneveau 1989; Sreenivasan 1991; Meneveau & Sreenivasan 1991; Prasad & 
Sreenivasan 1990 ; Miller & Dimotakis 199 1 ; Lane-Serff 1993). 

In velocity and scalar fields in turbulent shear flows, there are two principal length- 
scale ranges to which such fractal descriptions might apply. The first spans from the 
local outer scale S (the scale of the mean shear profile), which is largely determined by 
the boundary and initial conditions of the flow, to the local inner scale A, (the viscous 
scale), which is the result of a local balance between strain and vorticity diffusion in the 
flow. Between 6 and A,, there is a range of scales that are generally believed to exhibit 
a statistical self-similarity that leads, among other things, to the familiar k-5/3 power- 
law scaling in the energy spectrum. A second range of scales, in which a different self- 
similarity exists, is present in conserved scalar fields [(x, t )  when the scalar diffusivity 
D is much smaller than the vorticity diffusivity v, namely when the Schmidt number 
Sc = v / D  is large. In that case, the local strain-limited scalar diffusion scale is A, = 
A, SC-~'', and there exists a self-similarity for scalar-fluctuation length scales between A, 
and A, that leads, among other things, to the k-l power-law scaling in the scalar energy 
spectrum (Batchelor 1959). The self-similarity in these two length-scale regimes, 
presumably produced by some underlying multiplicative process, suggests the 
possibility of a fractal description for the scaling properties of the velocity and scalar 
fields in turbulent flows. 

The precise self-similarity among scales that forms the basis for fractal geometry 
often refers to the repetition of a specific multiplicative mapping over a range of scales. 
Many classical fractals, such as the Cantor set, are generated by such a purely self- 
similar mathematical process. In turbulent flows such a precisely repeated scale 
similarity appears unlikely. However the notion of fractal scaling as satisfying precise 
deterministic scale similarity extends to stochastic scale-similarity as well, such as in the 
fractional Brownian motion (fBm) set. In such cases, a class of mappings characterized 
by one or more parameters is repeatedly applied, with the parameters constrained to 
satisfy certain statistics (e.g. Mandelbrot 1983 ; Feder 1988). A stochastic scale-similar 
multiplicative process in turbulent flows appears plausible, and would in turn produce 
various fractal signatures in the velocity and conserved scalar fields. Among these are 
the geometric scaling properties of dynamically passive conserved scalar fields being 
mixed by the underlying turbulent flow. 

Previous studies of the applicability of fractal scaling concepts to conserved scalar 
fields in turbulent flows have reached contradictory conclusions. Sreenivasan & Prasad 
(1989), Prasad & Sreenivasan (1990) and Lane-Serff (1993) have reported finding 
essentially similar fractal scaling in the geometry of isoscalar surface fields for large-Sc 
mixing in the far field of an axisymmetric turbulent jet. While Prasad and Sreenivasan 
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reported not finding any variation in fractal dimension with the choice of isoscalar 
threshold level (see their figures 10 and 14), Lane-Serff has suggested that the measured 
dimension depends on the isoscalar value. Miller & Dimotakis (1991) have also 
examined the geometry of isoscalar level crossings for Sc + 1 conserved scalar mixing 
in the far field of the turbulent jet, and find an effect of the choice of scalar threshold 
value on the results obtained, but conclude that their data show no evidence for the 
fractal scaling found by Sreenivasan & Prasad and Lane-Serff. 

The main difference between the studies from which these apparently contradictory 
conclusions were reached is the dimensionality of the scalar field data. Both 
Sreenivasan & Prasad and Lane-Serff based their studies on spatial analyses of scalar 
isosurfaces obtained from two-dimensional spatial intersections through the scalar 
field. In contrast, Miller & Dimotakis based their study on analyses of scalar threshold 
crossings from one-dimensional single-point time-series data, one-dimensional spatial 
data, and mixed space-time diagrams. As will be seen below, results of the present 
study show that the apparently conflicting conclusions from these previous studies are 
largely attributable to the different types of intersections analysed. 

This study presents results from an experimental assessment of the applicability of 
fractal scaling in turbulent flows by examining the scaling properties in conserved 
scalar field measurements. As in the studies cited above, the data analysed are from 
laboratory measurements of the Sc % 1 conserved scalar field in the far field of an 
axisyinmetric turbulent jet. However while the previous studies were restricted to either 
one-dimensional temporal data, two-dimensional space-time data, or two-dimensional 
spatial data, the present assessment is based on fully resolved three-dimensional 
(spatial) data as in figure 1, as well as combined four-dimensional (spatio-temporal) 
data for the space- and time-varying small-scale structure of the scalar field {(x, t) .  This 
allows analyses of three-dimensional spatial data and one-dimensional time-series data 
acquired simultaneously in the same experiment, and thus comparisons of the scaling 
properties of true scalar isosurface sets and simple isoscalar level crossing sets. The 
present focus is primarily on an assessment of the geometrical scaling properties in the 
length-scale regime between A,, and A,, though some of the results presented also 
examine the scale similarity at larger scales. In addition, since some previous studies 
suggest an effect of the choice of threshold value on the geometric scaling properties 
of isoscalar surfaces, this study presents results for a range of isoscalar values spanning 
a factor of 20 around the mean. The present study also examines the geometric scaling 
properties of scalar dissipation fields V<. V<(x, t) ,  such as in figures 1 (h) and 1 (d), for 
a similar range of dissipation thresholds around the mean. The scalar dissipation field 
is of greater interest than the scalar field itself in many problems, and since the 
dissipation fields are inherently concentrated on compact support geometries, they may 
be potentially less sensitive to the choice of threshold value. 

Finally, whereas previous studies have attempted absolute judgments as to the 
applicability of fractal scaling from individual experimental data records, the present 
study recognizes that it is fundamentally impossible to declare any finite-length record 
as being fractal or non-fractal. Instead it is at most possible to judge whether it is ‘as 
fractal as some known fractal set having the same record length’. Accordingly this 
study undertakes rigorous comparisons of the signatures of finite-length records from 
deterministic and stochastic fractal sets (irregular Cantor sets and fE3m sets) with 
experimental data of the same record length. It uses local fractal dimension maps and 
the ,y’ statistical criterion to objectively assess the applicability of fractal scale 
similarity for characterizing finite-length spatial and temporal data records spanning 
various length and time scale ranges in turbulent scalar fields. 
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FIGURE 1 (a, b). For caption see facing page. 
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F I G U R ~  I .  Examples of fully-resolved three-dimensional (2563) spatial data volumes of the type 
analysed in the present study. showing the conserved scalar field {(x, t )  in (u ,  c) and the corresponding 
scalar energy dissipation rate field V{. V{(x, t )  in (h,  d ) .  Note the sheet-like structure of the dissipation 
support. Axes indicate scales relative to the local inner scale ,\,, of the underlying turbulent flow; 

= 3700. Rt., = 45. Sc, = 2015. 
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A, A, Ax,Ay Az Beam 
Data type Re, Re, (Pm> (Pm) (Pm) ( P d  

Three-dimensional (spatial) 3700 45 257 11700 109 120 181 
Four-dimensional (spatio-temporal) 3000 41 303 13800 108 90 191 

TABLE 1. The spatial resolution characteristics of the experimental data used in this study. For both 
the three-dimensional spatial data and four-dimensional spatiwtemporal data the dimensions of the 
measurement volume (Ax, Ay, Az) are less than half the molecular diffusion length scale A,. 

A,/u A T  At AT 
Data type Re, Re, (ms) (ms) (ms) (ms) 

Three-dimensional (spatial) 3700 45 103 0.0238 8.87 2270 
Four-dimensional (spatietemporal) 3000 41 152 0.0238 8.87 53.2 

TABLE 2. The temporal resolution characteristics of the experimental data used in this study. The pixel 
illumination time AT and data-plane acquisition time At for both the three-dimensional spatial data 
and four-dimensional spatio-temporal data are orders of magnitude smaller than the local scalar field 
advection time A,/u. Moreover, the time between acquisition of the same pixel in successive three- 
dimensional data volumes AT in the four-dimensional data is less than half the scalar field advection 
time. This, along with the spatial resolution of the data (see table l), ensures that the data used in this 
study are fully resolved both spatially and temporally. 

This paper, Part 1, presents results from analyses of scale similarity in one- 
dimensional spatial and temporal intersections through scalar isosurface fields and 
through scalar dissipation support fields. Part 2 (Frederiksen, Dahm & Dowling 
1997 a) gives corresponding results for higher-dimensional intersections through these 
fields, including evidence of non-fractal inclusions, and Part 3 (Frederiksen, Dahm & 
Dowling 1997 b) assesses the applicability of multifractal scale similarity in conserved 
scalar fields and scalar dissipation rate fields in turbulent flows. 

2. Data characteristics 
The present results are obtained from analyses of laser-induced fluorescence data for 

Sc 9 1 mixing in the self-similar far field of an axisymmetric turbulent jet in water. The 
measurement technique is described in detail in Dahm, Southerland & Buch (1991) and 
Southerland & Dahm (1994). Briefly, the concentration field { ( x , t )  of a laser- 
fluorescent dye carried by the jet fluid was measured repeatedly in time at as many as 
2563 points within a small three-dimensional spatial volume located 23 5 diameters 
(1.15 m) downstream of the jet exit and 26 diameters (13 cm) off the jet centreline. A 
highly collimated laser beam was swept in a raster fashion through this volume, and 
the resulting laser-induced fluorescence from dye-containing fluid was imaged onto a 
high-speed, planar, 256 x 256 element, photodiode array. The array output was serially 
acquired at 8-bits true digital depth and continuously written in real time to a 3.1 GB 
high-speed parallel-transfer disk bank capable of accommodating more than 50 000 
such 2562 data planes. The resulting measured fluorescence intensity field was 
subsequently converted to the true dye concentration as described in Southerland & 
Dahm (1994). 

Each measurement produces the scalar field at over 3 billion individual points in space 
and time. To estimate the resulting spatial and temporal resolution for each of the cases 
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listed in tables 1 and 2, note that the local outer scale S ( x )  = 0 . 4 4 ~  and centreline 
velocity u(x) z 7.2 (J/p)1’2,v-1, with J the jet source momentum flux and p the ambient 
fluid density. For example, at the outer-scale Reynolds number Re, = (uS/v) z 3700 
and with the Schmidt number of 2075, the local strain-limited estimate of molecular 
diffusion length scale is A, = 257 pm and the estimate of local advection time scale is 
TL) = AU/u z 103 ms. For comparison, the in-plane spatial resolution was A(x ,y )  M 

109 pm. The ( 1 /e) laser beam thickness was measured as 18 1 pm. Deconvolution of the 
scalar field measurements among adjacent planes increases the effective spatial 
resolution in the z-direction to the interplane separation Az z 120 pm. These values 
show that both the characteristic scale of the pixel image volume (Ax Ay Az)li3 and its 
maximum dimension (Az) are less than 0.5 A,. Similarly, the temporal separation 
between successive data planes was At = 8.9 ms, and comparing with the diffusion- 
scale advection time of 103 ms verifies that the present measurements resolve 
essentially all of the fine-scale structure of the local turbulent mixing process. 

In terms of classical Kolmogorov variables, the strain-limited molecular diffusion 
length scale A, z A,, SC-’’~, where A, is the local strain-limited viscous diffusion scale, 
and A,, 2 5.9 A, (Southerland & Dahm 1994) and A, = ( I J ~ / C ) ’ ’ ~  is the Kolmogorov 
scale. Thus A,, is proportional to the Kolmogorov scale, but gives the average physical 
length scale of the finest vortical structures, with A, in turn proportional to the classical 
Batchelor scale but giving the physical length scale of the finest scalar gradient 
structures. In the four-dimensional data, the intervolume time of 0.05 s in all cases 
corresponds to less than half the scalar diffusion-scale advection time A,/u and thus 
less than 1/200 of the classical Kolmogorov time scale ( Y / c ) ’ ” .  Similarly, in both the 
three- and four-dimensional data, the interplane time is 0.009 s, which even in the worst 
case is less than (1 / 11) AJu, and thus is entirely trivial in terms of the Kolmogorov 
time. Consequently, the data acquisition rate is sufficient to effectively freeze the scalar 
field, and to entirely freeze the underlying velocity field. 

The high spatial and temporal resolution achieved, together with the high signal 
quality attained, allows accurate differentiation of the measured conserved scalar field 
in all three spatial dimensions and in time. This makes it possible to determine the 
components of the true local instantaneous scalar gradient vector field Vc(x, t )  
throughout these three- and four-dimensional data, without any need to resort to 
various approximations based on Taylor’s hypothesis as is commonly required. This in 
turn permits determination of the true scalar energy dissipation rate field V<.V<(x, r ) ,  
and thus an assessment of the geometric scaling properties of the highly compact 
support on which this field is concentrated in turbulent shear flows. 

Similarly, the temporal separation between adjacent data planes within each three- 
dimensional (2563) spatial data volume, and between the same data point in successive 
spatial volumes with fewer z-planes in the fully four-dimensional data, is shorter that 
the local diffusion-scale advection time TD. As a result it is possible to extract fully 
resolved time-series data of the type shown in figure 2 from both the conserved scalar 
field {(x, t )  and scalar energy dissipation rate field V{.V<(:(x, f), again without invoking 
any of various classical approximations. This in turn permits direct comparisons 
between geometric scaling results from multi-dimensional spatial data and one- 
dimensional time-series data, both obtained from the same realization of the conserved 
scalar field. 

Finally, note that the imaged region in the turbulent scalar field in these experiments 
typically spans less than 1 / 15 of the local outer scale 6, and is comparable to the local 
inner scale A,, of the flow. The structure of velocity and scalar fields in turbulent shear 
flows at scales near and below A,. is generally believed to be statistically universal. This 
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FIGURE 2. Examples from fully resolved four-dimensional spatio-temporal data of the type analysed 
in the present study, showing the time-variations in conserved scalar values [(u, c) and scalar 
dissipation values x = V<.Vc (b, d)  at one spatial location from successively measured spatial data 
volumes. The entire duration of the measurement is shown (u, b), as well as a magnified section 
demonstrating the high temporal resolution achieved (c, d). Symbols show the discrete measured 
values. 

contention appears to be true even for the present moderate Reynolds number flows, 
as evidenced by the measured collapse of small-scale spectra at similar Reynolds 
numbers by Dowling (1991), and by the DNS studies of Jimenez et al. (1993). The 
estimated Taylor-scale Reynolds numbers for the present data are Re,, % 45, well 
within the range of values over which the DNS results of Jimenez et al. showed 
Reynolds-number-independent collapse on inner variables at the smallest flow scales. 
Moreover, high-wavenumber spatial scalar spectra from these same data (Southerland, 
Dahm & Dowling 1995) show the k-l scaling predicted by Batchelor for large-& 
mixing in turbulent flows. As a result, even though the present measurments are from 
Re, w 3500 turbulent jets, the geometric scaling properties of the fine scales derived 
from them are believed to be largely representative of the generic scaling properties at 
the inner scales of all turbulent shear flows. 

3. Box counting criterion 
There are numerous methods for determining fractal scaling and dimension from 

experimental data. These range from box counting schemes to methods based on 
spectra and correlation techniques (Dubuc et al. 1989; Theiler 1990), and for 
sufficiently long record lengths many techniques can be satisfactorily applied. However 
in the present study, the three-dimensional (2563) spatial data volumes and four- 
dimensional spatio-temporal data produce record lengths of only 256 points in any 
spatial direction and 4096 points in the temporal direction. These relatively short 
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record lengths required techniques for accurate determination of scale similarity 
properties. Two related methods were developed based on a box counting algorithm 
and a ,y’ probability test to objectively determine if a given set of records follow fractal 
scaling. These methods give accurate results for numerically generated fractal and non- 
fractal records having lengths commensurate with the present experimental data. 

The record being analysed is first covered with a grid of boxes of a fixed size ( c / L ) ,  
where L is the record length, and the number N of boxes that contain any portion of 
the set is counted. The variation in N with scale (t./L) determines the geometric scaling 
properties of the set. In particular, a linear relation between logN and log(t./L) for 
small ( c / L )  indicates power-law (fractal) scaling of the form N - (t./L)-”, with the 
fractal dimension D determined by the slope. This widely used approach is motivated 
by the definition of the fractal dimension, namely 

where, if the limit exists, the set is fractal and the limit value is its fractal dimension D .  
However, the limit in (1) cannot be accurately approximated with short record 

lengths. For this reason, over the accessible range of scales the present box counting 
method instead looks for an asymptotic approach to scaling of this type in what is 
often termed the ‘local fractal dimension’ D(E) ,  given by 

This is demonstrated in figure 3, where N(e) results from irregular Cantor sets with 
relatively long record lengths (2’’ points) and dimensions D = {0.2,0.45,0.64,0.84) are 
shown in figure 3 (a) ,  together with the associated D(t.) in figure 3 (b) resulting from 
linear central differences on N(e) to approximate the derivative in (2). Although the 
N ( t )  results in figure 3(a)  appear nominally linear for small ( t / L )  in the logarithmic 
axes shown, the more sensitive test in figure 3 (b) reveals significant departures from the 
constant D(e) that would confirm true fractal scaling. As the box size ( s /L)  + 0, the D(e) 
results asymptote toward constant values; however, with decreasing D this approach 
becomes quite slow (since N becomes relatively small) and requires increasingly longer 
record lengths. For any finite record composed of p equally spaced discrete points, the 
smallest accessible box size is ( t / L )  = 1 / p .  With the 256-point records from the present 
spatial data, our D ( t )  results are thus confined to 2 d -log,(a/L) ,< 7. This accessible 
range of scales in figure 3 (6) is separated into two regions (Regions 1 and 2), the former 
dominated by the decrease in D(c) at relatively large box sizes, and the latter in which 
an asymptotic approach to constant D(e) becomes evident for the higher dimension 
cases. The standard deviation CT in the average D(e) of each individual record over 
Region 2 in figure 3(h) depends on the true dimension D ,  and provides a means for 
assessing the asymptotic approach in (1) and determining the true dimension. 

The criterion for declaring an ensemble of finite-length records as being fractal then 
becomes that the ensemble of D(t) values from (2) over a selected range of scales (e /L)  
must have the same statistics as the values generated over the same range of scales by 
an ensemble of true fractal sets having the same record length and dimension D = 

( D ( e ) ) .  The records in the ensemble are then ‘as fractal as the true fractal is over the 
accessible range of scales’. In practice this criterion is satisfied if the variances of both 
distributions are equal. 

To establish the criterion r ( ( D ( e ) ) )  against which the geometric scaling properties 
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FIGURE 3 .  Box counting results for individual realizations of irregular Cantor sets with D = {0.20, 
0.45,0.64,0.84), showing log, N(e) (a) and corresponding local dimensions D(E) obtained by linear 
central differencing (b). Note the effect of dimension and record length on convergence of D(E) to D. 

of the experimental records are compared, (2) was applied to 10000 numerically 
generated irregular Cantor sets for each of several fractal dimensions D. Irregular 
Cantor sets are generated from a unit line segment as the initiator, and a generator 
consisting of a set of distinct line segments of lengths [cl, cz7 . . . , cm]. which form a subset 
of the initiator. At each stage of the construction every line segment of the initiator is 
replaced by a properly scaled version of the generator. This process is repeated until 
the desired resolution is reached. The fractal dimension of the resulting irregular 
Cantor set is given by 

(3) 

The classical ‘middle-third’ Cantor set corresponds to c, = c2 = 1/3, giving the fractal 
dimension D = 0.631 .. . . However the use of irregular Cantor sets allows many 
different realizations with the same fractal dimension. Figure 4(a) shows the results for 
N(c) obtained from 10000 256-point record lengths irregular Cantor sets with D = 0.5, 
with the corresponding D(e) values shown in figure 4(b). Over the range of scales 
4 < log,(e/L) < 7, these give (D(c ) )  = 0.536 and 

For precisely self-similar fractals like the irregular Cantor sets in figure 4, the 
resulting v values are small (see table 3), which produces a very strict requirement for 
judging any 256-point record to be ‘as fractal as a Cantor set’. However, since any 
repeated multiplicative mapping in turbulent flows is likely to be at most statistically 

m c (C i )D  = I.’ 
i = l  

= 0.020. 
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FIGURE 4. Box counting results for 10000 realizations of deterministically self-similar irregular 
Cantor sets with D = 0.5 and 256-point record lengths, showing relative densities in log, N(c)  (a) and 
the local dimension D(t )  (b). Compare with stochastically self-similar fractal sets in figure 5.  

Cantor sets 
~ 

D (D) flT(<D)) 

0.1 0.222 0.029 
0.2 0.237 0.038 
0.3 0.330 0.052 
0.4 0.444 0.028 
0.5 0.536 0.020 
0.6 0.630 0.0 I5 
0.7 0.724 0.010 
0.8 0.821 0.008 
0.9 0.920 0.004 

fBm sets 

( D )  d ( D ) )  
0.137 0.128 
0.205 0.138 
0.29 1 0.134 
0.381 0.1 18 
0.476 0.097 
0.565 0.081 
0.658 0.067 
0.760 0.059 
0.869 0.043 

TABLE 3. D ( t )  statistics from box counting analyses of 10000 irregular Cantor sets and fBm sets 
at each of nine different fractal dimensions D. 
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FIGURE 5. Box counting results for 10000 realizations of stochastically self-similar fBm sets with D = 
0.5 and 256-point record lengths, showing relative densities in log, N(e) (a) and the local dimension 
D(s) (b). Compare with deterministically self-similar fractal sets in figure 4, and with analogous results 
for 4096-point record lengths in figure 15. 

self-similar, Cantor sets yield criteria for judging a turbulent scalar field record to be 
fractal that may be too strict. For this reason, analogous tests were performed with a 
class of statistically self-similar fractals, namely the level crossing sets produced by 
fractional Bronnian motion (fBm) (e.g. Feder 1988). Figure 5 shows the D(e) signature 
obtained from 10000 realizations of such fBm sets, each with the same dimension 
D = 0.5. Table 3 summarizes the results for fBm sets with fractal dimensions from 0.1 to 
0.9, where the r ( ( D ( t ) ) )  can be used to judge if any 256-point record can be declared 
to be 'as fractal as an fBm set having the 5ame record length'. 

4. x2 probability criterion 
The approach to constant D(e) in (2) can also be quantified in the N(t) scaling itself 

by examining the linearity of log ( N )  with log (e /L)  for each individual record. 
However, the inherently monotonic decrease in log(N) us. log(s/L), even for non- 
fractal records, demands a strict criterion for discerning linearity. Classical statistics 
(Bevington & Robinson 1992; Press et al. 1992) provides a rigorous means to assess the 
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FIGURE 6. Cumulative probability contours ofjoint Q and (D(t))  values from each of the Cantor sets 
( a )  and fBm sets (h )  represented in table 3. Also shown are analogous contours for random sets having 
the same relative cover. 

statistical significance of a linear least-squares fit to the log ( N )  z's. log ( c / L )  results for 
any record. This was accomplished with the x2 goodness-of-fit parameter 

where P is the incomplete gamma-function, n is the number of points in the log ( N )  us. 
log(t./L) data. and ,y2 is the mean-squared deviation from a linear fit normalized by the 
variances (T' obtained from an ensemble of true fractals. If the parameter Q is 
sufficiently large, then a linear fit as good as that obtained could not consistently occur 
by chance. Computing the Q value for any record and comparing i t  to a properly 
chosen threshold produces a criterion for evaluating each individual intersection for 
fractal scale similarity. 

The threshold Q values for statistically declaring whether a given record is as fractal 
as various known fractal sets for the same record length were obtained by applying this 
criterion to irregular Cantor sets and fBm sets with the same dimension, and to 
randomly generated sets with the same relative cover. Results are presented in figure 
6 ,  where joint cumulative distributions of ( D )  and Q values for 10000 individual 256- 
point realizations of irregular Cantor sets (figure 6 n )  and of fBm sets (figure 6b) are 
shown for true dimensions D between 0 and 1. Also shown are results for 10000 
random sets with 256-point record lengths and the same relative cover. The contours 
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show the boundaries within which a given fraction of the records lie. For instance, in 
figures 6(a)  and 6(b) just 1 % of all the fractal cases produce (D) and Q values to the 
left of the 0.01 contour, 5 %  of the fractal cases give values to the left of the 0.05 
contour, etc. Similarly, 99% of the random sets produce values to the left of 0.99 
contour, 95% of the random cases produce values to the left of 0.95 contour, etc. 
Comparing figures 6 (a) and 6 (b) shows that the statistically self-similar fBm fractal sets 
produce lower Q values than do the precisely self-similar irregular Cantor sets. 
However, even for the fBm sets, there is a clear separation between the Q values 
obtained from fractal and random sets (except at very large and very small 
dimensions). 

This effectively allows any individual 256-point record from the experimental data 
to be judged as fractal as an fBm set, or possibly even as fractal as a Cantor set. The 
(D) and Q values obtained for each record correspond to a single point in each of 
figures 6(a) and 6(b). For an ensemble of such records, the corresponding joint (0) 
and Q probability densities allow identification of the percentage of records that are as 
fractal as any given percentage of the fractal test cases, or as random as any given 
percentage of the random test cases. In practice, we examine the fraction of records 
that fall to the right of the 0.01 contours in figures 6(a) and 6(b) to determine the 
percentage of records that are as fractal as 99 YO of the fractal test cases. 

Lastly, mention must be made of the possible effects of any cutoff in the range of 
scales over which fractal scalar similarity might occur. The fBm and Cantor sets used 
here as test fractals are uniformly scale-similar at all scales. In the experimental data 
there is the possibility of a break in the scaling, or even a cutoff in the scaling range, 
near the diffusive scales A, and A,. Given the relatively short record lengths used in this 
study, it is not possible to test for such effects, and thus the criteria described above 
provide a comparatively stringent test for uniform scale-similarity over the entire range 
of scales investigated. 

5.  Effects of noise 
To ensure that any assessment of the scale-similarities in experimental data is not 

strongly influenced by noise effects, it is necessary to either attempt to remove noise in 
the data by filtering, or else to show that its effects on the analyses are negligible. The 
former approach was taken by Miller & Dimotakis (1991), who attempted to remove 
noise by applying an optimal Wiener filter. Their results, however, showed that filtering 
can have a potentially significant effect on results from box counting analyses. 
Accordingly, the data in the present study were not filtered so as to prevent any loss 
of information or possible filter signature imprinting. Instead, the sensitivity of the 
results to synthetically generated noise was investigated. 

This was done by adding Gaussian noise at levels up to ten times the expected noise 
in the measurements to the scalar field data, and then using the noise-enhanced data 
to produce scalar isosurface fields and scalar dissipation fields. Statistics from these 
noise-enhanced fields were then used to modify both fractal and non-fractal test cases 
of the type in the previous sections. Results showed that, even at ten times the expected 
noise level, there was less than a 2 %  change in the number of sets determined to be 
fractal and non-fractal. Moreover, with increasing simulated noise there was only a 
slight increase in the average dimension estimate (D(E. ) )  of the fractal sets. These 
results are summarized in figure 7, and give a clear indication that experimental noise 
in these data was not an obstacle in the present assessment of fractal scale-similarity. 
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FIGURF 7. Effects of noise on box counting results for scalar isosurface sets and dissipation support 
sets, showing the insensitivity to noise in ( D ( c ) )  and (T (a). and in the fraction of fBm sets and random 
sets judged to be fractal (b). 

6. Results for 256-point spatial intersections 
Over 2 million individual one-dimensional spatial intersections through three- 

dimensional (256") data volumes of the type shown in figure 1 were analysed using the 
fractal assessment criteria described above. The scaling properties of the mean scalar 
isosurface geometry in conserved scalar field data {(x, t )  of the type in figure 1 (a ,  c) 
were examined, as were the properties of the dissipation support geometry on which 
scalar energy dissipation rate fields V<-V<(x, f) of the type in figure 1 (b,  d )  are 
concentrated. 

6.1. Scalar dissipation support geometry 
The support set on which the scalar dissipation field V<. V{(x, t )  is concentrated 
consists of all spatio-temporal points where the dissipation lies above a selected 
threshold value. For the results in this subsection, this threshold was chosen at the 
mean dissipation value; effects of varying the threshold value are examined in $7. The 
resulting scaling properties of the dissipation support-set geometry are presented in 
figure 8, and represent ensemble statistics collected from over 2 million one-dimensional 
256-point spatial intersections through the true three-dimensional dissipation field over 
the range of scales between the scalar diffusion scale A ,  and the viscous diffusion 
scale A,.  

Figure 8 ( ( I )  gives the ensemble D(e)  results, where the average dimension obtained 
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FIGURE 8. Spatial scale-similarity results for the dissipation support geometry at the inner scales A, < 
c, < A,,, showing D ( 6 )  signature (a) and joint Q and ( D ( c ) )  signature (b). Compare with figures 10 
and 18. Data are from over 2 million 256-point spatial intersections through scalar energy dissipation 
fields V<.V<(x. r )  in three-dimensional (2563) data volumes of the type in figure 1 (b). 

in Region 2 is (D) = 0.619. It is apparent that the local dimension signature D(s)  at 
length scales c between the viscous and scalar d ihs ion  scales is fundamentally different 
from that in figure 4(6) for 256-point irregular Cantor sets with a single dimension. 
From this it can be firmly concluded that the dissipation support geometry at the inner 
scales of turbulent flows is definitely not as fractal as a Cantor set having a single 
dimension. However the D(c) results in figure 8 (a) do strikingly resemble the signature 
in figure 5(b) for 256-point fBm sets. Indeed, the standard deviation of D ( t )  in Region 
2 in figure S ( u )  is o- = 0.137. This should be compared with the o- = 0.015 value in table 
3 for irregular Cantor sets having the same average dimension (D) of 0.619, and with 
o- = 0.074 for fBm sets with ( D )  = 0.619. Table 3 also shows that, for 256-point 
intersections through sets with scale similarity comparable to that of fBm sets. the 
average dimension estimate of 0.619 above corrcsponds to a true average dimension (at 
infinite record length) of D = 0.658. 

Figure 8(h)  gives the corresponding ensemble joint distribution of ( D )  and Q values 
for the dissipation support geometry. This should be compared with the probability 
contours for the corresponding irregular Cantor sets and random sets in figure 6(n) ,  
and for fBm sets and random sets in figure 6(b). Note that the precisely deterministic 
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scale similarity in the Cantor sets leads to much higher Q values than are demonstrated 
by the dissipation support set. However the stochastic scale similarity in the fBm sets 
produces Q values more in accordance with those in the dissipation support. In 
particular, 89.6 of the (0 )  and Q values in figure 8 (b)  are to the right of the contour 
bounding 99 YO of the fBm sets in figure 6(b), and only 1.3 YO are to the left of the 
contour bounding 99% of the random sets. Less than 10% of the intersections 
produced (D) and Q values that were between these two contours, and thus could not 
be judged to be as fractal as an fE3m set having the same record length or as random 
as a random set with the same record length. 

I t  must be concluded that 256-point intersections through the support geometry on 
which the scalar energy dissipation field is concentrated at the inner scales of turbulent 
flows follow scale similarity characteristics that, while they are not nearly as fractal as 
the deterministically self-similar Cantor sets, are nearly as fractal as the stochastically 
self-similar fBin sets. The somewhat larger CT in figure 8 ( a )  may, however, be 
potentially indicative of at least a small variation in the dimension D of the dissipation 
support over this range of length scales. 

6.2. Scalar isosurface geometry 
Analogous results for the geometry associated with scalar isosurface crossings, 
obtained from over 2 million one-dimensional 256-point spatial intersections through 
the conserved scalar field <(x, f), are given in figure 9. Ensemble statistics of the local 
fractal dimension D(e) at length scales c: between the viscous and scalar diffusion scales 
are given in figure 9(a), where the average dimension obtained in Region 2 is 
( D )  = 0.460. Figure 9 ( a )  should be compared with the corresponding signatures of 
256-point Cantor and fBm sets in figures 4(h )  and 5(h) .  As was the case for the dissipa- 
tion support geometry, the precisely deterministic scale similarity in irregular Cantor 
sets such as in figure 4(h) leads to a much lower variation (n = 0.027) in local fractal 
dimensions for the same average dimension than is found from the 256-point 
intersections through the scalar isosurface geometry (n  = 0.122) in figure 9(a). It can 
be concluded that the scalar isosurface geometry at the inner scales of turbulent flows 
is not nearly as fractal as a Cantor set with a single dimension. The measured n value 
is much more consistent with the results for 256-point fBm sets of the type in figure 
5(h), for which table 3 shows n = 0.101 at the same average dimension (D) = 0.460. 
Note also that table 3 indicates a true average dimension (at infinite record length) of 
D = 0.48 for sets showing scale similarity comparable to fBm sets with average 
dimension estimate of 0.619 for 256-point intersections. However, unlike the 
corresponding D ( t )  map in Region 2 for an fBm set, figure 9 ( a )  does not appear to 
asymptote to a strictly constant value indicative of true fractal scaling. This should be 
compared with the asymptotically constant D(e) signature obtained in figure 8 (a) for 
the dissipation support geometry over the same range of length scales from precisely 
the same data. 

Consistent with this, the corresponding ensemble distribution of joint (D) and Q 
values for the spatial scalar isosurface geometry is given in figure 9(h).  This should be 
compared with the probability contours for irregular Cantor sets, fBm sets, and 
random sets in figure 6. As was the case for the dissipation support geometry, the 
precise scale similarity in the Cantor sets in figure 6 ( m )  leads to much higher Q values 
than are found in the scalar isosurface geometry. The stochastically self-similar fBm 
sets yield lower Q values that are more in accordance with those found from the scalar 
isosurface data. However, even though only 2.7 % of the over 2 million intersections 
produced (D) and Q values to the left of the contour bounding 99 % of random sets, 
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FIGURE 9. Spatial scale-similarity results for the scalar isosurface geometry at the inner scales 
A, 6 et < A,,, showing D(e) signature (a) and joint Q and (D(E))  signature (b). Compare with figures 
14 and 21. Data are from over 2 million 256-point spatial intersections through conserved scalar fields 
[(x, t )  in three-dimensional (?563) data volumes of the type in figure 1 (a). Note the lack of any strict 
asymptotic approach to constant D(c)  with decreasing length scalcs cL. 

in this case only 83.0 "A of these intersections produced values that were to the right of 
the contour bounding 99% of fBm sets, and slightly more than 1 4 %  of the 
intersections produced values that were between these contours and thus judged as 
being indeterminate. 

It can be concluded that 256-point spatial intersections through scalar isosurface 
geometries in turbulent flows at length scales c between the viscous and scalar diffusion 
scales display scale similarity that is not nearly as fractal as a Cantor set with the same 
record length. While there is evidence that the scaling is at least approximately similar 
to the stochastic fBm set, the D(c) map in figure 9(a) gives a clear indication that the 
scalar isosurface geometry over this range of scales is not truly as fractal as an fBm set 
with the same record length, nor is its scaling as fractal as that of the dissipation 
support geometry over the same range of length scales. 
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(4 i,,, ( D )  (T Fractal (%) Random (YO) No. intersections 
( 5 )  
0.2 0 479 0.141 80.0 4.3 1016943 
0.5 0.455 0.128 80.9 3.3 1841 910 
1 .0 0.460 0.122 83.0 2.7 1 835 894 
1.5 0.462 0.124 80.5 3.6 I551 644 
2.0 0.461 0.131 75.8 5.5 1 078 250 
3.0 0.466 0.135 72.4 7.4 399 745 
4.0 0.471 0.140 64.5 12.4 92 445 

X W P  (D) 0- Fractal (Yo)  Random (%) No. intersections 
< x> 
0.2 0.782 0.103 98.9 0.1 2 032 930 
0.5 0.691 0.124 95.0 0.4 1 996 997 
1 .0 0.619 0. I37 89.6 1.3 1 892 537 
1.5 0.576 0.143 85.7 2.3 1 773 126 
2.0 0.547 0.147 82.8 2.9 1 648 085 
3.0 0.508 0. I52 78. I 4.1 1410624 
4.0 0.482 0.155 74.6 4.9 1215872 

TABLP, 4. Effect of threshold values on D(c) statistics and joint Q and ( D ( 6 ) )  statistics from inter- 
sections through (a)  scalar isosurface geometry and (b) dissipation support geometry, ,y = 05. Vl. 

7. Effects of threshold 
Scalar isosurface fields or dissipation support fields require defining a threshold 

scalar value < or scalar dissipation rate value 05- VC. Results in the previous section 
were obtained by thresholding both fields at their respective mean values. This choice 
appears the most natural and, more importantly, in the scalar field produces near the 
greatest number of isoscalar crossings. The isosurface results above are thus based on 
the largest possible statistical sample available from the data. Nevertheless, since some 
previous studies have reported finding variations in dimension, and even variations in 
the applicability of fractal scale-similarity, based on the choice of threshold values, 
table 4 summarizes results from spatial analyses using various threshold levels in both 
the conserved scalar and scalar dissipation fields. The threshold values examined span 
a factor of 20 around the mean. 

Results obtained for the scalar isosurface fields are given in table 4(a) .  These show 
that the average local fractal dimension ( D ( c ) )  and the standard deviation in local 
fractal dimensions CT are essentially independent of the choice of threshold level. 
However the percentage of intersections found to be fractal decreases significantly for 
threshold levels above about twice the mean scalar value. This effect appears to be due 
to the resulting sparseness of the isoscalar fields at higher threshold values, as can be 
seen from the last column of table 4 giving the number of non-empty intersections 
obtained for each threshold level. Note that there are nearly 20 times as many non- 
empty intersections for the isoscalar surface constructed from the mean scalar value as 
there are at four times the mean scalar value. Nevertheless, even at the highest 
threshold value examined, a significant fraction of the intersections satisfied the 
criterion for being judged to be as fractal as an fBm set of the same record length with 
the same average dimension, and only a small fraction of the intersections were as 
random as a random set with the same record length and relative cover. This 
demonstrates that the conclusions reached in the previous section about the scaling 
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properties of the isoscalar surface geometry are not specific to any narrow choice of 
threshold levels. 

Similarly, results obtained for the scalar dissipation support geometry are given in 
table 4(b). Unlike the scalar isosurface field, in this case the largest number of non- 
empty intersections occurs at the lowest threshold level, for which 98.9% of 
intersections through the dissipation support are as fractal as 99 % of fE3m sets having 
the same record length. The decrease in average local dimension (D(e ) )  with increasing 
threshold values is to be expected from the approximately log-normal distribution of 
dissipation values on the support, since the support thus becomes increasingly less 
space-filling as the threshold increases. The standard deviation CT in average local 
dimension for these intersections is seen to increase slightly as the number of non- 
empty intersections decreases with increasing threshold value. Since this scales at least 
roughly as - N-112,  the effect appears to be largely a matter of statistical convergence. 
The fraction of non-empty intersections judged to be as fractal as a corresponding fBm 
set decreases significantly with increasing threshold value, and the number of 
intersections appearing as random as a corresponding random set increases but 
remains small. This may be due to the increasing sparseness of the support geometry 
with increasing threshold level, which reduces the amount of scaling information 
contained in any 256-point intersection and thus makes identification of any scale- 
similarity increasingly difficult. In any case, over the entire range of thresholds 
examined, most of the intersections are found to be as fractal as a corresponding fBm 
set, indicating that the fractal scaling found in the dissipation support geometry in the 
previous section is also not specific to any narrow choice of threshold levels. 

8. Results for 256-point temporal intersections 
Over 40 000 individual 256-point intersections along the temporal direction through 

the four-dimensional data for the scalar field <(x, t )  and the scalar energy dissipation 
rate field VY. V<(x, t )  were analysed in an analogous manner to the spatial intersections 
above. The results for temporal intersections with scalar fields were generated in two 
ways to facilitate comparisons with previous work and with the current spatial results. 
Miller & Dimotakis (199 1) used one-dimensional single-point time-series measure- 
ments of the scalar field to examine the set of points at which selected threshold level 
crossings occurred. They used one-dimensional interpolation between points in their 
time-series data to estimate the time at which each level crossing occurred. In the 
results below, their single-point construction is termed the ' isoscalar level crossing set '. 
Unlike their one-dimensional time series data, the present four-dimensional data allow 
simultaneous construction in all three space dimensions as well as in time of the true 
temporally evolving scalar isosurface field. In the results below, this multi-point 
construction is appropriately termed the ' scalar isosurface crossing set ' to distinguish 
it from the simple isoscalar level crossing set, and to emphasize that it is the true 
temporal equivalent of the spatial isosurface intersections examined above. 

8.1. Scalar dissipation support 
While there are distinct differences in the isoscalar level crossing set and the scalar 
isosurface crossing set as defined above, there is no ambiguity whatsoever in defining 
the temporal support set for the true scalar dissipation field Vc.V<(:(x, t). It cannot be 
obtained from one-dimensional single-point time-series data, and can only be obtained 
from four-dimensional spatio-temporal measurements as those points where the true 
dissipation lies above a selected threshold value. For the results below, this threshold 
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FIGURE 10. Temporal scale-similarity results for the dissipation support geometry over the inner 
scales q, < tt 4 q,, showing D(e) signature ( a )  and joint Q and ( D ( t ) )  signature (b) .  Compare with 
figures 8 and 18. Data are from over 30000 256-point temporal intersections through scalar energy 
dissipation fields V{.V{(x, t )  in four-dimensional spatio-temporal data of the type in figures 2(h )  and 
2 ( d ) .  Note the asymptotic approach to constant D(e)  with decreasing time scales et. 

was set at the mean dissipation value. The resulting temporal scaling properties of the 
dissipation support-set geometry are presented in figure 10. 

Figure IO(u) gives the ensemble D(t) results from the 256-point (temporal) 
dissipation support-set scaling. This can be compared with the corresponding D(s) 
results from the 256-point (spatial) dissipation support set scaling in figure 8 (a).  The 
scaled length and time axes in both maps span essentially the same range of scales 
relative to the inner (diffusive) scale of the turbulent scalar field. This is a direct result 
of the essentially comparable spatial and temporal resolution in the original scalar field 
measurements (see $2). Figure 10(b) gives the ensemble joint distribution of (D) and 
Q values for the (temporal) dissipation support geometry, and can be compared with 
the corresponding result obtained from the (spatial) dissipation support geometry in 
figure S(h). Note that the two local dimension maps in figures 8 ( a )  and 10(a) are very 
similar. as are the two joint (D) and Q distributions in figures 8(b)  and lO(b). The 
average dimension obtained in Region 2 in figure 10(a) is (D) = 0.618, which can be 
compared with the value (D) = 0.619 in figure 8(a) .  Similarly, the standard deviation 
of D(6,) in Region 2 in figure 1O(a) is CJ = 0.139. and in figure 8(b)  was 0.137. Note also 
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FIGURE 1 1 .  Results for isoscalar level crossings over the inner scales T, < E, < T,, showing D(c) 
signature (a) and joint Q and ( D ( c ) )  signature (b) .  Compare with figures 9 and 19. Data are from over 
40000 256-point temporal intersections through conserved scalar fields {(x, t )  in four-dimensional 
spatio-temporal data of the type in figures 2(a) and 2(c). Note the lack of any approach to constant 
D(c) with decreasing time scales e(,  which is reflected in the Q and ( D ( e ) )  statistics as well. 

that D(e) clearly asymptotes to a constant value indicative of true fractal scaling. 
Comparing the probability contours in figure 10(b) with those for fBm sets and 
random sets in figure 6(b) shows that 90.8 YO of the (D) and Q values in figure 10(b) 
are to the right of the contour bounding 99% of the fBm sets in figure 6(b) (versus 
89.6 YO for the analogous spatial intersections in figure 8 b), and only 0.8 YO are to the 
left of the contour bounding 99% of the random sets, with less than 8.4% of the 
intersections producing (D) and Q values that were between these two contours. These 
probabilities are entirely consistent with those obtained from the (spatial) scalar 
dissipation support analyses above. Note that table 3 indicates a true average 
dimension (at infinite record length) of D = 0.657 for sets with scale similarity 
comparable to fBm sets having average dimension of 0.618 over 256-point intersections. 

It can be concluded that 256-point temporal intersections through the support 
geometry of the scalar energy dissipation field at the inner scales of turbulent flows are 
nearly as fractal as scale-similar fBm sets having the same record length. Moreover, the 
apparent similarity of figures 8 and 10 implies the existence of a single scale similarity 
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FIGURE 12. Example illustrating the difference between isoscalar level crossing sets and true scalar 
isosurface crossing sets. Shown are the time variation in conserved scalar values [(x, t )  at a single 
spatial location x in four-dimensional spatio-temporal data (a), and the corresponding isoscalar level 
crossing set and true scalar isosurface crossing set (b) .  

at the inner scales of turbulent flows that applies equally to both spatial and temporal 
aspects of the support-set geometry on which the true scalar energy dissipation rate 
field V{.V<(x. f) is concentrated. 

8.2. Issoscalar level crossings 
Results from scale similarity analyses of 256-point temporal isoscalar level crossing 
sets, as defined above, are given in figure 11. These results can be compared with the 
local dimension map for an fBm set in figure 5 (b) and the joint (0) and Q distribution 
for fSm sets in figure 6(b) .  It is readily apparent that the local dimension D(e) in figure 
11 ( a )  is fundamentally different from any of the maps for known fractal sets or from 
the experimental data above. The ensemble D ( t )  results show no asymptote to any 
constant dimension as would be seen if fractal scale-similarity applied to this construct, 
and instead decrease monotonically to D --f 0 as F, + 0. Similarly, the joint distribution 
of (D) and Q values falls in the range where both random and fBm sets coincide, 
leaving the clear conclusion that these isoscalar level crossing sets are not fractal. 

These results for level crossing sets are in complete agreement with those of Miller 
& Dimotakis ( 1991 ), who based their assessment of fractal scale-similarity in turbulent 
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flows entirely on isoscalar level crossing sets. In particular, the local dimension map 
D(e) in figure 11 (a )  can be compared with their figures 5,8 and 17, and shows the same 
lack of any constant region that would be indicative of fractal scaling. However, while 
they suggested that this was indicative of a broad inapplicability of fractal scale- 
similarity in turbulent flows, the present results demonstrate that this lack of fractal 
scale-similarity is particular to the isoscalar level crossing construct, and is not 
indicative of a lack of fractal scale-similarity in turbulent flows in general. Indeed, 
scale-similarity tests applied to other constructs, like the true scalar isosurface 
geometry and in particular the scalar dissipation support geometry, obtained from 
precisely the same data as the isoscalar level crossing sets, clearly show much closer 
agreement with stochastic fractal similarity in both spatial and temporal intersections 
at the inner scales of turbulent flows. These can be compared with the corresponding 
scaling results for one-dimensional spatial isoscalar level crossings in figure 6 of Miller 
& Dimotakis (1991) and for mixed spatial and temporal isoscalar level crossings in 
their figure 7. Lacking the three-dimensional spatial information necessary to identify 
true isoscalar surfaces with discrete data, their constructs show the same clearly non- 
fractal scaling as do our level crossing results in figure 11. 

8.3. Scalar isosurface crossings 
In this subsection, analogous results are presented for 256-point temporal scalar 
isosurface crossing sets, from the present four-dimensional scalar field measurements. 
As noted above, this set is different from the various isoscalar level crossing sets 
considered by Miller & Dimotakis (1991). This is illustrated in figure 12: a short sample 
of the temporal scalar field data are shown in figure 12(a), together with the 
corresponding isoscalar level crossing set and the corresponding scalar isosurface 
crossing set in figure 12 (b). Note that the availability of additional three-dimensional 
spatial information from surrounding pixels in the scalar isosurface construction 
allows the true isosurface to be determined, and thus a more precise determination of 
the length of time it takes the isosurface to cross the pixel of interest. Isoscalar level 
crossing sets from one-dimensional single-point time-series data, on the other hand, are 
constructed without this additional spatial information and thus are a more coarse 
approximation of the precise time during which the chosen isoscalar value resides in the 
pixel volume. Isoscalar level crossing sets constructed solely from one-dimensional 
spatial measurements suffer the analogous spatial problem. In the dual limits of infinite 
digital resolution and infinite spatio-temporal resolution, the two constructions 
become identical. However for any finite-resolution discrete measurement (including 
any fully resolved measurement) there is an uncertainty of up to one pixel width in 
locating both the isosurface and the true threshold crossing point. With one- 
dimensional temporal or spatial data, any greater precision than this requires ad hoc 
approximation. However, with three-dimensional spatial data it is possible to 
determine if the isosurface still occupies the pixel volume. This distinction creates 
important differences in these two sets, which in turn lead to substantial differences in 
their respective scale similarity properties. 

The latter point is illustrated in figure 13, where the covering properties N(e) of the 
two sets in figure 12(b) are compared in figure 13(a) and their corresponding local 
dimensions are compared in figure 13 (b). Note that there are large differences between 
the results for these two sets. In particular, the local dimension D(E) in figure 13(b) 
shows a monotonic decrease to D + 0 as e --f 0 for the isoscalar level crossing set, as was 
seen in figure 11 (a) for an ensemble of such isoscalar levels crossing sets, but shows a 
more nearly constant region of D(s) for the scalar isosurface crossing set. The 
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FIGUR~: 1.3. Results from analyses of the isoscalar level crossing set and true scalar isosurface crossing 
set in figure 12. showing the corresponding log,N(t) signatures (u)  and D(e) signatures (b). At 
sufficiently large scales the two sets become identical, as evidenced above. but a t  small scales the two 
show fundamentally different scalings. 

difference between these two constructs, and in particular their differing scale-similarity 
properties, appears to explain why the earlier study by Miller & Dimotakis (1991) 
concluded that fractal scaling was inapplicable to turbulent flows, while figure 9 (h)  
clearly shows at least limited stochastic fractal scale-similarity for the true scalar 
isosurface geometry at the inner scales of turbulent flows. 

Figure 14(0) gives the ensemble D(s)  results from 2.56-point (temporal) scalar 
isosurface crossing sets, and can be compared with the corresponding D(s) results from 
the 256-point (spatial) isoscalar surface geometry scaling in figure 9 (a). The scaled 
length and time axes in both maps again span essentially the same range of scales 
relative to the inner (diffusive) scale of the turbulent scalar field. Figure 14(b) gives the 
ensemble joint distribution of ( D )  and Q values for the (temporal) scalar isosurface 
crossing sets, and can be compared with the corresponding result obtained from the 
(spatial) isoscalar surface geometry scaling in figure 9(h ) .  As was the case in 
comparisons of the spatial and temporal scale similarity in the scalar dissipation 
support sets in figures 8 and 10, note that the results in figures 9 ( a )  and 14(u) are very 
similar, as are the two joint (D) and Q distributions in figures 9(h) and 14(6). The 
average dimension (D) in Region 2 in figure 14(a) is 0.453, which can be compared 
with the value 0.460 in figure 9(a) .  Similarly, the standard deviation CT in Region 2 in 
figure 14(a) is 0.129, and in figure 9(6) was 0.122. Comparing probability contours in 



60 R. D .  Frerleriksen, W. J .  A .  Dohm ond D .  R. Dowling 

TD 1 

I I 
0 185 

Relative density 

-20 -1 5 -10 -5 0 

loglo Q 
FIGURE 14. Teniporal-scale similarity results for the true scalar isosurface geometry over the inner 
scales T, < eT < q,, showing D(c) signature (a) and joint Q and ( D ( e ) )  signature (b). Compare with 
figures 9, 11 and 21, Data art: from over 40000 256-point tenipvral intersections through conserved 
scalar fields <(x, t )  in four-dimensional spatio-temporal data. Note the lack of any strict asymptotic 
approach to constant D(E) with decreasing length scales F , .  

figure 14(h) with the results for FBrn sets and random sets in figure 6(h) shows that 
85.7 YO of the ( D )  and Q values from the (temporal) scalar isosurface crossing sets are 
to thc right of the contour bounding 99 % of the fBm sets, and only 1.8 % are to the 
left of the contour bounding 99 % of the random sets. These probabilities are very close 
to those obtained from the (spatial) scalar isosurface gcometry analyses above. 

It can be concluded that 256-point temporal scalar isosurface crossing sets at the 
inner scales of turbulent flows agree very well with thc corresponding 256-point spatial 
intersections through the isoscalar surface geometry. As was found by comparing 
results from spatial and temporal analyses of scalar dissipation support-set geometries 
at the inner scales of turbulent flows, this observation further implies the existence of 
a single scale-similarity at the inner scales of turbulent flows that applies equally to 
both spatial and temporal aspects of the isoscalar surface geometry. However the D(s)  
map in figure 14(a) again shows that there is no clear asymptote to a constant 
dimension that would be indicative of true fractal scaling. Thus, as was found from the 
spatial analyses in $6, the notion of stochastic scale similarity of the fBm type is at best 
an approximation for the isoscalar surface geometry over the inner range of 
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spatio-temporal scales. This is in contrast to the results in figure 10(a) for the scalar 
dissipation support geometry, where analyses of 256-point records showed a more 
convincing asymptote to constant D(e) indicative of genuine stochastic fractal scale- 
similarity. 

9. Results for 4096-point temporal intersections 
The results above have dealt with assessments of spatial scale similarity among the 

range of length scales between A,, and A,, and temporal scale similarity among the 
range of time scales between and T,, which comprise the inner scales of turbulent 
scalar fields. The analyses have made use of 256-point spatial and temporal data 
records which span precisely this range of scales. In this section, these scale similarity 
analyses are extended to much larger scales by using longer 4096-point temporal 
records that span the range of temporal scales from the local large-scale time to the 
scalar diffusive scale 7;,. Results in each case are from nearly 2000 such 4096-point 
temporal intersections. 

The longer data records of course lead to reduced variance in the local fractal 
dimension D(t) .  and thus require recalibrating the local fractal dimension maps using 
4096-point fBni level crossing sets. An example of the resulting D(6) maps, from 10000 
realizations of fBm sets with D = 0.5, is shown in figure 15. This can be compared with 
the 256-point results for Cantor and fBtn sets with D = 0.5 in figures 4(h) and 5(h). 

9.1. Scalur dissipution support 
Figure 16(u) gives the ensemble D(e) results from 4096-point temporal intersections 
through the scalar dissipation support over the range of scales from & to T,. This 
should be compared with the signature for fBm sets with a single fixed dimension in 
figure 15, and that from the shorter-record-length spatial and temporal results in 
figures 8(u) and l O ( a ) .  The result in figure 16(a) might appear to suggest a different 
scale-similarity among scales between and and among the inner scales between T, 
and T,, somewhat reminiscent of the differing self-similarities in these two scale regimes 
that lead to the k 5'3 and t' spectral scalings, respectively, alluded to in the 
Introduction. However, to clarify this figure 17(u) shows the D(e)  signature for 10000 
4096-point fBtn sets all having the same dimension D = 0.618 as the average value from 
the temporal dissipation support results above. Note that even in this manifestly fractal 
case, the D ( t )  results at this dimension and with this longer record length show only 
a slow asymptotic approach to the constant dimension indicative of fractal scaling. It 
must be concluded that the decreasing D(e) values obtained over the same range of 
scales in figure 16(u) are not necessarily indicative of non-fractal scaling at temporal 
scales between and T,. 

This is further supported by figure 16(b), which gives the corresponding joint 
distribution of ( D )  and Q values for the dissipation support set over T, < ct d T,, 
where the reduced variation in local ditnension noted above is evident, and where the 
longer record lengths lead to much higher Q values as well. The result is a much 
narrower joint distribution. In fact the distribution very nearly resembles the result in 
figure 17(h) for 4096-point fBm sets with a single dimension. Figure 17(c) shows the 
corresponding probability contours over a wide range of dimensions, where 99.0% of 
the long-record-length intersections in figure 16 yield (D) and Q values to the right of 
the contour bounding 99 9'0 of the fBm sets in figure 17(c). No intersections produced 
values to the left of the contour bounding 99 Yo of all corresponding random sets. Thus 
essentially all of the scalar dissipation support set, even at temporal scales between 6 
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FIGURE 15. D(s) signature for stochastically self-similar fJ3m sets with D = 0.5 and 4096-point record 
lengths. Compare with the corresponding results for 256-point record lengths in figure 5. 

and T,, produces 4096-point intersections that are as fractal as an fE3m set having the 
same record length. 

The range of scales between T, and TD is shown in figure 18, where the present result 
can be seen to be in good agreement with the 256-point spatial result in figure 8 (a )  and 
the corresponding temporal result in figure lO(a), but with the longer record length 
giving less variance in local dimension. The average dimension (D(e ) )  in Region 2 
from the 4096-point intersections is 0.661, with the variance giving cr = 0.047, which 
can be compared with the 0.619+0.138 result from the 256-point intersections. The 
higher dimension from the longer record lengths is to be expected from table 3,  in 
which (D(e ) )  = 0.619 from 256-point records would indicate a true dimension at 
infinite record length of D = 0.658, in excellent agreement with the present 4096-point 
result. It must be concluded that the geometry of the scalar dissipation support on the 
inner scales of turbulent flows has very nearly the same scale-similarity properties as 
does the stochastically self-similar fE3m fractal set with D = 0.66. The similarities 
demonstrated above between spatial and temporal scaling properties of the scalar 
dissipation support indicates that this conclusion applies to the entire four-dimensional 
spatio-temporal geometry of the support set on which the scalar dissipation field in 
turbulent flows is concentrated. Moreover, this dimension value appears consistent 
with findings of Prasad, Meneveau & Sreenivasan (1988) from multifractal analysis of 
their approximated scalar dissipation rate, where a dimension estimate of 0.70 results 
for the set that dominates the mean dissipation (see their figure 5 for q = 1). 

9.2. Isoscalar level crossings 
Figure 19(a) presents the ensemble D(e) results over the range of scales from to T,, 
obtained from 4096-point temporal isoscalar level crossing sets of the type analysed by 
Miller & Dimotakis (1991) and in 58.2. The corresponding joint distribution of ( D )  
and Q values is shown in figure 19(b). It is readily apparent that both these results are 
inconsistent with any notion of fractal scale-similarity in isoscalar level crossing sets in 
turbulent flows, even over the inner range of scales from T, to T,. This is in complete 
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FIGURE 16. Temporal scale-similarity results for the dissipation support geometry over the range of 
scales from T, < t; < T,, showing D(E) signature (a) and joint Q and (D(t.)) signature (b). Compare 
with figures 10 and 17. Data are from 4096-point temporal intersections through scalar energy 
dissipation fields V{. V{(x, t )  in four-dimensional spatio-temporal data of the type in figures 2(b) and 
2(d) .  

agreement with the result of Miller & Dimotakis for the same construct, and in fact the 
present figure 19(a) is essentially identical to their figure 5. This result is also in 
agreement with the corresponding result from 256-point record lengths in figure 11 (a), 
with the reduced variance from the present longer record lengths more clearly revealing 
the monotonic decrease to D --f 0 as e --f 0. However while Miller & Dimotakis suggest 
that this lack of fractal scale-similarity in temporal isoscalar level crossing sets broadly 
precludes fractal scale-similarity in turbulent flows, the present results verify that this 
is not the case. The results above for intersections through the scalar dissipation 
support, obtained from precisely the same data, clearly show scale-similarity that is as 
fractal as an fBm set having the same record length. 

9.3. Scalar isosurface crossings 
Figure 20 (a) presents the ensemble D(e) results from 4096-point temporal intersections 
through the true scalar isosurface geometry over the range of scales from & to G. Note 
that, between and T,, the results for scalar isosurface geometry, figure 20(a) are 
essentially identical to those for the isoscalar level crossings in figure 19(a). This is to 
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FIGW 17. Box counting results for stochastically self-similar fSm sets with 4096-point record 
lengths, showing D(a) signature for D = 0.618 (a), joint Q and (D(a)) signature for D = 0.618 (b), and 
joint Q and (D(c ) )  signature for wide range of dimensions (c). Compare with figures 16 and 18-21. 
Note the asymptotic approach to constant D(a) with decreasing scale E .  
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FIGURE 18. Results from figure 16 over the inner range of scales < 6, < q, showing D(e) signature 
(a) and joint Q and ( D ( e ) )  signature (b). Compare with figure 17. Data are from 4096-point temporal 
intersections through scalar energy dissipation fields Vg. V<( .x, t) .  

be expected, since the differences between thcsc two constructs are at the small scales. 
Indeed, over the range of inner scales from T, to T, there are fundamental differences 
between the D(6) results in figures 19(u) and 2O(a), consistent with the examples in 
figures 12 and 13 and the results in figures 1 1  and 14. 

The D(e) results over the inner rangc o f  scales from T, to T, are shown in figure 21. 
Comparing with the corresponding 256-point results in figures 9 ( a )  and 14(a) shows 
good agreement at the inner scales, with the longer record length giving less variance 
in local dimension. This reduced variance makes clearer the lack of a strict approach 
to a truly constant dimension indicative of genuine fractal scale-similarity over this 
range of scales. 

At larger scales. between & and q,: the D ( t )  result in figure 20((i) may not look very 
different from that in figure 16(a); however examining contours in the joint distribution 
of (D j and Q values in  figure 20(h) and comparing with figures 16 and 17  (b) shows 
that it is difficult to find a 4096-point scalar isosurf'ace intersection extending ot-er 
to TI, that is as fractal as a corresponding fBm set over this range of scales. Only 2.6 '10 
of the intersections produced (D) and Q values to the right of the contour bounding 
99% of all fBm sets having the same record length. It must be concluded that scalar 
isosurface fields in turbulent flows display scaling that at least approximates stochastic 
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FIGURE 19. Results from analyses of isoscalar level crossings over the range of scales from T, < e, < 
T,, showing D(s) signature (a) and joint Q and (D(6))  signature (b). Compare with figures 1 1 ,  17 and 
20. Data are from 4096-point temporal intersections through conserved scalar fields [(x, t )  in four- 
dimensional spatietemporal data of the type in figures 2(a) and 2(c). Note the lack of any approach 
to constant D(e) with decreasing time scales et, which is reflected in the joint Q and ( D ( F ) )  statistics 
as well. 

fBm fractal scale-similarity only over spatio-temporal regions of the order of the inner 
length and time scales (AD, T,) to (Av, q), but do not display a single fractal scaling for 
records spanning across much larger spatio-temporal regions. 

10. Discussion and conclusions 
This paper has developed objective statistical techniques for scale-similarity analyses 

and applied them to 256-point and 4096-point data records. The goal has been to assess 
the applicability of uniform fractal scale-similarity in the spatio-temporal structure of 
Sc 9 1 conserved scalar and scalar dissipation fields in turbulent flows. The techniques 
developed here have been shown to reliably identify both deterministic (Cantor) and 
stochastic (fBm) fractal sets, and robustly discriminate between fractal and random 
sets even for short record lengths. These techniques have been applied to one- 
dimensional spatial and temporal intersections from fully resolved three- and four- 
dimensional measurements of conserved scalar fields {(x, I) and scalar energy 
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FIGURE 20. Temporal scale-similarity results for the true scalar isosurface geometry over the range of 
scales from T, < el < q, showing D(6) signature (a) and joint Q and (D(e) )  signature (b). Compare 
with figures 14, 16 and 17. Data are from 4096-point temporal intersections through conserved scalar 
fields {(x, t )  in four-dimensional spatio-temporal data. Note the lack of any asymptotic approach to 
constant D(e) with decreasing length scales c t ,  even over the inner scales T, ,< tt < T,. 

dissipation rate fields V<-V<(x, b )  in a turbulent flow. The results obtained span the 
range of scales from the scalar diffusion scales ( , ID ,  TD) to the viscous diffusion scales 
(Au, TJ and to the outer scales (S,T,), and are summarized in table 5. 

From the spatio-temporal support geometry on which the scalar dissipation field 
V<-V<(x, t )  is concentrated at the inner range of scales between (AD,  TD) and (Av, q), 
89.6 Yo of more than 2 million spatial intersections and 90.8 YO of more than 20000 
temporal intersections were found to display uniform scale-similarity as fractal as 
stochastically self-similar fBm sets having the same record length. However, these 
intersections were not as fractal as deterministically self-similar irregular Cantor sets 
having the same record length. Nevertheless, only 1.3 YO of such spatial intersections 
and 0.8 O/O of temporal intersections showed scale-similarity characteristics as random 
as a corresponding random set. Both the 256-point spatial and temporal intersections 
in figures 8 and 10 showed the same average local fractal dimension ( D ( c ) )  and 
standard deviation CT, yielding 0.619 _+ 0.138 in comparably normalized length and time 
scales in Region 2. From table 3 this would indicate a true average dimension (at 
infinite record length) of D = 0.658 for intersections with the spatio-temporal 
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FIGURE 21. Results from figure 20 over the inner range of scales T, < eC < q, showing D(E) signature 
(a) and joint Q and ( D ( E ) )  signature (b). Compare with figures 9,14 and 18. Data are from 4096-point 
temporal intersections through conserved scalar fields {(x, t )  in four-dimensional spatietemporal 
data. Note the lack of any strict asymptotic approach to constant D(E) with decreasing length 
scales et. 

256-point Spatial support 
records Temporal support 

Spatial isosurface 
Temporal isosurface 
Temporal level crossings 

4096-point Temporal support 
records Temporal isosurface 

Temporal level crossings 

( D )  (T Fractal (%) Random (%) 

0.619 0. I37 
0.618 0.139 
0.460 0.122 
0.453 0.129 

0.661 0.047 
0.466 0.039 

- 

- 

89.6 
90.8 
83.0 
85.7 
13.8 

99.0 
2.6 
0.0 

1.3 
0.8 
2.7 
1.8 

15.2 

0.0 
0.0 
0.0 

TABLE 5. Summary of variations in applicability of stochastic fractal scale-similarity and dimension 
in Region 2 for sets analysed. Note that the average dimension ( D )  = 0.619 from 256-point 
dissipation support records corresponds in table 3 to D = 0.658 for fBm sets with effectively infinite 
record length, which agrees well with ( D )  = 0.661 from 4096-point dissipation support records. 
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dissipation support geometry at the inner scales of turbulent flows. This is in good 
agreement with the value (D(e ) )  = 0.661 k0.047 from 4096-point temporal results in 
Region 2 in figure 18, for which 99.0% of all intersections demonstrated scale 
similarity as fractal as 99 YO of all fBm sets with the same record length. As noted in 
$9.1, this value for the dissipation support dimension appears to be in good agreement 
with the result inferred from the approximate multifractal analyses of Prasad et al. 
(1988). The present results for the dimension at threshold values other than the mean 
dissipation can be inferred from table 4(b). 

At larger scales, between the viscous and outer scales T, and q, figure 16(b) shows 
that the scalar dissipation support geometry continues to display scale-similarity as 
fractal as fBm fractal sets having the same record length. The similarity found 
throughout this study between comparably scaled spatial and temporal intersections 
would indicate that this scale-similarity applies to spatial scales between A, and 6 as 
well. In fact comparing figures 16 and 17(b) suggests that a single dimension might 
even suffice to model the dissipation support geometry over the entire range of scales 

Similar analyses of the geometry of true scalar isosurfaces in the conserved scalar 
field [ (x ,  t )  over the inner range of spatio-temporal scales between (AD, 7'') and (Av, T,> 
do not show a strict asymptotic approach to constant dimension with decreasing scale 
such as seen in the dissipation support geometry. However over the inner scales (see 
figures 9, 14, and 21) such isosurfaces display scaling in both space and time that at 
least approximates the similarity characteristics of an fBm set with D = 0.48 (at infinite 
record length), with table 4(a) showing that the corresponding dimension for other 
isoscalar values remains essentially the same. Of over 2 million such spatial intersections, 
83.0 9'n showed scale-similarity as fractal as 99 YO of fBm sets of the same record length, 
as did 85.7 Yn of over 2 x lo6 such temporal intersections. In both cases, less than 3 YO 
of these intersections showed scaling as random as a corresponding random set. 

However unlike the scalar dissipation support geometry, at scales between the 
viscous scale T, and the outer scale q, figure 20(b) demonstrates that the scalar 
isosurface geometry shows no uniform scale-similarity consistent with either 
deterministically self-similar fractals such as the irregular Cantor set or stochastically 
self-similar fractals such as the fSni set. Only 2.6% of all intersections spanning 
between T, and &were as fractal as fBm sets of the same record length. In view of the 
consistency between spatial and temporal results found throughout this study, it must 
be expected that this lack of uniform fractal scale-similarity in isoscalar surface 
geometry applies to the corresponding range of spatial scales between A, and 6 as well. 

The reason for this apparently fundamental difference in scale similarity properties 
of the conserved scalar field { (x ,  t )  and the scalar dissipation rate field 05. V<(x,  t) may 
lie in the differing retention of information in these two fields. In the scalar field, the 
precise spatial distribution of scalar values, and thus also the isosurface geometry, 
depends intimately on the entire evolution of the scalar field since its initial conditions. 
In contrast, the scalar dissipation support geometry is largely insensitive to all but its 
recent history, since as scalar gradient layers merge and their dissipation drops below 
the threshold value, they disappear from the support set and the information they carry 
concerning past history of the underlying mixing dynamics is lost. Scalar isosurface 
geometries thus reflect variations in the dimension of the underlying multiplicative 
process that produces the mixing, while the dissipation support field would not. 

While the strong evidence of fractal-scale similarity with D = 0.66 in the scalar 
dissipation support appears consistent with the result of Prasad et al. (1988), the 
apparent lack of any uniform fractal scale-similarity in the geometry of isoscalar 

from (AD, r,> to (8, q). 
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surfaces contrasts with the findings of Sreenivasan & Meneveau (1986), Prasad & 
Sreenivasan (1990), Sreenivasan et al. (1989) and Sreenivasan (1991). There are several 
possible reasons for the different finding in this study. The present assessments are 
based on strict tests for uniform fractal scale-similarity over the entire range of scales 
examined. That no such scaling is found in the isoscalar surface geometries could 
potentially result from a break in similarity over the range of scales examined. Indeed 
a scaling break might be anticipated across the viscous diffusion scales (A,,, K ) ,  where 
the scalar energy spectrum changes from k-l to k-5/3 scalings and where Sreenivasan 
and co-workers show evidence for a corresponding change in the fractal dimension. 
However the present results convincingly show uniform fractal scale-similarity in the 
dissipation support field over the entire range of scales examined, and show no change 
in dimension across (A,,, TJ. A second possible reason for the different finding in this 
study is the potential influence of inner and outer cutoffs in the range of scales 
examined. The inner cutoff near the scalar diffusion scales (AD,  T.) lies at the extreme 
end of the range of scales examined, and moreover it is precisely in this inner range of 
scales that the present study finds the closest approach to uniform fractal scale 
similarity. The other cutoff expected near (8, q), lies somewhat outside the range of 
scales examined, even in the longer 4096-point temporal records. Moreover strong 
evidence was found for fractal scale-similarity in the dissipation support field over this 
entire range of scales (see figure 16b), yet over the same range of scales no evidence of 
fractal scale-similarity was found in the corresponding scalar isosurface data (see figure 
20b). It is of course possible that the cutoff scales or even the break in scaling across 
the viscous scales manifest themselves differently in the scalar and dissipation fields, as 
discussed above. There also remains a possibility that the present Re, values may not 
be sufficiently large for the scale-similarity to establish itself in the scalar field; however 
these Reynolds numbers are not very different from other studies, and more 
importantly the clear evidence for uniform fractal scale-similarity in the dissipation 
support fields from precisely the same data suggests that this is not likely to be the case. 
Finally, it is possible that the strict statistical criterion adopted here for judging data 
records to be as fractal as various test sets having the same record lengths may be more 
stringent than those applied in previous studies. 

The present study has also clarified some of the apparent contradictions between 
earlier results for the applicability of fractal scaling concepts to turbulent scalar fields. 
In particular the results have shown that, except in the double limit of infinite digital 
resolution and infinite spatial and temporal resolution, isoscalar level crossing sets are 
fundamentally different constructs from the true scalar isosurface sets examined herein 
and in the other studies cited. These two constructs differe at the small scales only, but 
this leads to fundamentally different scale-similarities as was shown in figures 11 and 
14 and figures 19 and 20. Level crossing sets cannot be compared against true scalar 
isosurface intersections to judge the applicability of fractal scale-similarity in turbulent 
flows. The present results have clearly demonstrated that, while isoscalar level crossing 
sets show no fractal scale-similarity, intersections through the scalar dissipation 
support geometry obtained from precisely the same data show scale-similarity 
consistent with stochastic fractal sets having the same record length. 

The three- and four-dimensional scalar field data used in this study were obtained 
at Michigan as part of the doctoral dissertation work of Dr Kenneth B. Southerland, 
under support from the Air Force Office of Scientific Research (AFOSR) Airbreathing 
Combustion program under Grant No. AFOSR-89-0541 and the AFOSR Turbulence 
Structure and Control program under Grant No. F49620-92-5-0025, and under 
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suppor t  from thc Gas Research Inst i tute  (GRI) under GRI Contract No. 5087-260- 
1443. 
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